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Supplementary Methods 

Background on NIH Peer Review 

At the National Institutes of Health (NIH), peer review takes place in a two-stage process. 

In the first stage, groups of expert scientists convene to evaluate grant applications submitted in 

response to a particular funding opportunity announcement. These groups, called Scientific 

Review Groups (SRGs), are administered by the Center for Scientific Review (CSR) at NIH. In 

the second stage, the advisory council of the awarding NIH Institute or Center examine reviews 

and make funding decisions based on the overall impact ratings assigned during the first stage, 

while taking into consideration the funding priorities of the Institute or Center. The director of 

the funding Institute or Center makes the final funding decision based on the advisory council’s 

input.  

The Scientific Review Officer. Each SRG is overseen by a Scientific Review Officer 

(SRO). The SRO is an NIH staff scientist tasked with ensuring that the SRG operates according 

to all relevant laws, procedures, and policies. The responsibilities of the SRO include recruiting 

qualified expert reviewers to serve in SRGs, assigning applications to reviewers based on their 

expertise, assigning a chairperson to serve as the moderator of the peer review meeting, 

managing any conflicts of interest that arise in the SRG, overseeing the SRG peer review 

meeting, and preparing summary statements to send to the Principal Investigator (PI) for each 

application reviewed during the SRG meeting.  

Study Sections at NIH. At NIH, peer review meetings are referred to as study sections. 

Many study sections are what NIH terms standing study sections, in that there are rotating rosters 

of permanent members (as well as temporary members) who serve on a given study section for 

multiple years at a time. There are also Special Emphasis Panels that are convened on an ad hoc 
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basis, which our study aimed to replicate. Both types of study sections generally follow a 

predetermined procedure overseen by the SRO, described below. 

1. Prior to the study section meeting: 

• The SRO assigns each reviewer to evaluate a set of applications, either as primary, 

secondary, or tertiary reviewer, with the primary reviewer having expertise most 

closely aligned to the application  

• Individual reviewers read the applications assigned to them, which they access via an 

online interface (electronic Research Administration, or eRA) 

• Reviewers assign a preliminary overall impact rating for each application, ranging 

from 1 (Exceptional) to 9 (Poor)  

• Reviewers assign individual criterion ratings on this nine-point scale for each of 

five criteria: Significance, Investigator(s), Innovation, Approach, and Environment 

• Reviewers write a critique that summarizes the overall impact of the application, and 

details the strengths and weaknesses for each of the five criteria. The critiques and 

ratings are submitted and made available to all reviewers prior to the meeting via the 

eRA system 

• The SRO calculates an order of review based on the average preliminary overall 

impact ratings from the three assigned reviewers, starting with the best (i.e., lowest) 

scoring application. Only the top 50% of applications are discussed during the 

meeting, and the bottom 50% are “triaged out” from discussion (meaning they do not 

receive a final overall impact rating and are no longer considered for funding)  

2. During the study section meeting: 

• The SRO reviews the meeting procedures 
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• The chairperson introduces each application, beginning with the best-scoring 

application 

• The three assigned reviewers (preliminary, secondary, tertiary) each announce their 

preliminary overall impact rating 

• The three assigned reviewers each summarize their critique of the application 

• The chairperson calls for and moderates discussion to the panel at large 

• The chairperson summarizes the discussion for the panel 

• The three assigned reviewers each announce their final overall impact ratings for 

that application (which may or may not have changed after discussion) 

• The remaining non-reviewing panelists privately write down their final overall impact 

ratings. Panelists are expected to vote within the range set by the assigned reviewers 

(e.g., if the assigned reviewers assign ratings of 3, 4, and 5, all panelists are expected 

to assign ratings between a 3 and 5); however, if they wish to assign a rating outside 

the range, the chairperson will ask them to identify that they are doing so 

• This procedure unfolds for each application discussed in the meeting 

3. After the study section meeting: 

• Reviewers have the opportunity to edit their written critiques to reflect any changes to 

their ratings, if they wish to do so 

• The SRO compiles the reviewers’ critiques into a summary statement that is 

provided to the PI, along with the final overall impact rating from the panel (i.e., the 

average rating from all panelists, multiplied by 10; final overall impact ratings range 

from 10 to 90). Summary statements from standing study sections may also include 
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the percentile rating that indicates the percentage of applications receiving better 

final overall impact ratings from the study section within the past year 

Prior Work on Peer Review 

There is prior research examining the grant peer review process. Some studies have 

assessed agreement among grant reviewers, but these studies investigated the grant peer review 

process at funding agencies located outside the US, including Canada (6, 12), Australia (7, 9, 

38), Finland (13), and Switzerland (8), all of which have a grant peer review process that is rather 

different from the one at NIH. Furthermore, many of these studies examining reliability (11-13) 

focus on whether panel discussion improves agreement. 

Although some researchers have studied peer review at NIH specifically, they analyzed 

data that were obtained before 2009 (39, 40), which was when NIH made significant changes to 

their rating system, in part in order to address the low reliability of the previous rating scale (41). 

Some of the seminal studies examining agreement in grant peer review even utilize data from the 

1980s (4, 5) and 1990s (38). Given that modern research is becoming increasingly complex, 

broad, large-scale, and interdisciplinary (41), the research on older peer review mechanisms is 

hardly applicable to today’s research landscape.  

Note that many studies on pre-2009 NIH reviewer data do not examine the actual level of 

inter-reviewer agreement. Instead, their goal was to propose procedures for obtaining more 

reliable rating estimates, such as by increasing the number of reviewers (40) or by applying 

particular kinds of mathematical models (39), while other researchers focused not on reliability 

but on investigating NIH funding outcomes for biases based on gender (14, 17), race/ethnicity 

(15), or type of research (16).  
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All of the earlier studies on reliability in the grant peer review process focus exclusively 

on the numeric scores; no study to date has examined agreement in the written evaluations, nor 

whether reviewers agree on how to “translate” a certain number of strengths and weaknesses into 

a score. Consequently, no research has yet been conducted to rigorously evaluate the current NIH 

grant peer review process.  

Constructed Study Section Methodology 

Our constructed study section methodology is novel, but there is a long history from 

many different disciplines of relying on simulated or mock groups to examine group processes. 

For example, in medical education, the use of standardized patients and simulated patients is 

commonplace (42-44). For decades, studies conducted on mock juries have been used to draw 

conclusions about the interpersonal processes and group dynamics that unfold during jury 

deliberations for legal proceedings (45-48). Although the application of such methods to the 

study of peer review is novel, the use of such simulated methods to draw generalizable 

conclusions is well established.  

Qualitative Analysis 

We utilized the qualitative data analytical software program NVivo to engage in open 

coding (49) of the written critiques. First, three members of the research team collectively open 

coded several critiques together to establish a baseline coding scheme. Our approach was 

exhaustive, such that every word in every critique received a code with nothing left uncoded, and 

the codes were mutually exclusive, meaning that each word received one and only one code. As 

is common practice in qualitative data analysis, codes are named in vivo early in the coding 

process, meaning the name for the code is derived verbatim from the data. For example, if a 
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reviewer writes, “The research environment is outstanding,” we would create a code called 

Environment is outstanding. 

Next, one member of the team applied the coding scheme to a random sample of critiques 

until she reached saturation, i.e., when the codes became repetitive and no new codes are 

generated. At this point, she engaged in axial coding, which means she condensed codes and 

related codes to one another; for example, Environment is outstanding was combined 

with Environment is exceptional and with Environment is excellent to 

become an axial code, Environment is a strength. This process of axial coding led to 

a taxonomy of strengths and weaknesses based on two elements: (i) the content (e.g., an 

evaluation of the scientific approach, versus the qualities of the investigator, versus the 

innovation of the proposal), and (ii) the relative magnitude of the evaluation (e.g., a major 

weakness versus a minor weakness).  

Table S2 lists all of the axial codes our research team derived, along with a brief 

definition of each code. There are five higher-order categories denoting the magnitude of 

evaluation: Strength, Minor Strength, Weakness, Major Weakness, and 

Neither. Within each category, there are axial codes (e.g., Application, Approach, 

Innovation, etc.) denoting the content of evaluation. Although some codes appear in more 

than one category (e.g., Strength–Approach, Weakness–Approach), note that not 

every code appears in every category, since some codes did not occur in our data (e.g., there 

were no major weaknesses related to Environment). Some codes are unique to a category; for 

example, Advice to the PI and Questions posed to the PI are each only included in the 

Weakness category. Table S3 provides an example from our data set for each of the axial codes.  
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Establishing inter-rater reliability. The next step in the coding process was for two 

members of the research team to collaboratively code several critiques together using the axial 

coding scheme in Table S2. Once both team members felt they had achieved a joint 

understanding of applying the coding scheme, each member independently coded a 20% random 

subsample of the data that had not yet been coded in order to compute inter-rater reliability. For 

the 20% subsample, percent agreement was 92.12% and weighted Cohen’s kappa was .755.  

In some fields in which researchers engage in qualitative research, it is expected or 

required to report only percentage agreement as a measure of inter-rater reliability. However, a 

growing body of research (50-53) has established that because percentage agreement does not 

correct for agreement due simply to chance, it is an upward biased measure of agreement and 

therefore cannot be trusted. On the other hand, Cohen’s kappa (k) is considered the gold standard 

of reliability measures (54). Thus, using percentage agreement on its own is problematic and 

generally considered not robust enough for most fields and journals, whereas kappa is argued to 

be a more acceptable index to report.  

 There are many conflicting guidelines that exist for interpreting acceptable minimum 

values for kappa (55). The guidelines from Landis and Koch (56) are the most often cited; they 

label values of .21 - .40 as fair, .41 - .60 as moderate, .61 - .80 as substantial, and .81 - 1.00 as 

near perfect. Landis and Koch admit that the cutoff values are arbitrary, but argue that they 

provide useful benchmarks for interpreting kappa values. Other researchers (54, 55, 57, 58) have 

proposed a cutoff of .75 or larger—or even .70 or larger (59)—as indicative of excellent or 

substantial agreement, but some recommend providing both values of kappa and the measure of 

percent agreement (53, 54). Thus, we chose to report both measures here for maximal 

transparency, and we argue that given 92% agreement and K = .755, we achieved acceptable 
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agreement between the two coders. 

Gold standard coder. The final step in our coding process is for one of the team 

members to code the remaining critiques using the coding scheme. This is what is known as the 

use of a gold standard coder (54). 

Results of qualitative coding. Table S4 provides how frequently each axial code 

occurred in our data, the average incidence of each axial code per critique, the standard deviation 

of the axial code across critiques, and the strength of the correlation for each category with our 

outcome variable of interest, the preliminary overall impact rating. Note that because the 

preliminary overall impact rating uses a reverse nine-point scale (1 = Exceptional, 9 = Poor), 

negative correlations indicate a relationship with better-rated applications and positive 

correlations indicate a relationship with worse-rated applications.  

Illustrative Excerpts from the Corpus 

In order to illustrate the nature of the disagreement among reviewers evaluating the same 

proposal, we provide a few examples from the data. The first example illustrates how reviewers 

perceive the same application to be of fundamentally different quality—that is, they assign 

starkly different scores. For the “Stavros” application (i.e., the pseudonym we assigned to the PI 

for our study), the four reviewers assigned scores of 7, 2, 3 and 4 out of a possible 9 (with 9 

being the worst possible score). The following excerpts are extracted from the first paragraph of 

their critique, when asked to summarize the strengths and weaknesses of the application. We 

omitted additional details that were not coded as a strength or a weakness (i.e., summarizing the 

aims of the application): 

Reviewer 1: [Score = 7] “PI has experience in DNA technology but PI needs to 
learn in vivo animal study and design. Proposed radiation dose is inadequate and 
sample size justification is not described. Significance of the study in respect 



 
 

36 
 

currently available technology/treatment is not well described. Different 
luciferase imaging is not innovative.” 
 
Reviewer 2: [Score =2] “A highly focused application describing a streamlined 
approach for screening compounds that target glioma stem cells in preclinical 
models of glioblastoma… Well supported by preliminary data. “ 
 
Reviewer 3: [Score = 3] “Strengths of the application are the PI, the solid 
preliminary data to support the hypothesis, the research team, and the research 
environment. There are some concerns regarding the approach that weaken the 
enthusiasm for this study, but overall, the enthusiasm is high and success is 
likely.” 
 
Reviewer 4: [Score = 4] “Though this application has potential to identify 
druggable target/s, this proposal suffers from several flaws including 1. Open 
ended; 2. Interdependent aims; 3. lack of definite target/s. These problems reduce 
the enthusiasm for this otherwise promising proposal. 
 

These excerpts illustrate that reviewers identify different types of weaknesses in this application 

(e.g., innovation, approach, significance), disagree on specific weaknesses (e.g., the 

qualifications of the PI), and importantly, assign vastly different scores. The next set of examples 

come from an application (PI pseudonym of “Rice”) that received similar scores from the 

different reviewers: 4, 3, 3, and 4. However, the excerpts below demonstrate how different 

reviewers’ evaluations are for specific weaknesses: 

Reviewer 1: [Score = 4] “Lack of preliminary data… dampens the enthusiasm of 
the proposal… Most of the proposed work is already established in other cancel 
models; hence the innovation of the study appears to be moderate. The 
experimental design needs more information on the power calculation of the 
number of patient samples and also for in vivo work. Overall, it is an very 
interesting proposal with a well-qualified team; however, lack of details 
diminishes the significance and the impact of the proposal.” 
 
Reviewer 2: [Score = 3] “This is an excellent proposal… Dr. Rive is an expert in 
IGF-1R signaling and its role in breast cancer progression. She has enlisted the 
help of strong collaborators with expertise… Together this is an outstanding 
investigative team… The proposal is conceptually innovative, although it is not 
technologically innovative. The aims are logical and the experiments proposed are 
well-designed. There is confidence that useful information will be garnered from 
these studies. The one major weakness lies in the over-expression experiment 
shown in Figure 3D, where there is an almost undetectable downregulation of 
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IGF-1R. The generation of such genetically manipulated cells is critical for the in 
vivo experiments proposed in Aim 2. Despite this weakness, enthusiasm for this 
application is high. 
 
Reviewer 3: [Score = 3] “This well-written application by Rice tests the novel 
hypothesis that Beclin 1 functions as a tumor suppressor…. Overall, this is an 
excellent proposal that presents a very interesting model that is soundly reasoned. 
However, at present it is still not clear whether this is truly an autophagy-
independent mechanism. Further, other autophagy-independent mechanisms of 
Beclin 1 that have previously been described such as effects on BCL-2/apoptosis 
are minimally addressed.” 
 
Reviewer 4: [Score = 4] “The hypothesis are sound and the preliminary data is 
abundant. However, my enthusiasm for this proposal was dampened by the 
somewhat scattered manner in which it was presented. The approach section was 
confusing and concepts introduced were not properly addressed in the 
introduction. Finally, the lack of a sufficient diagrams of models makes it very 
difficult to track the varying aspects of the experiments to determine whether the 
expected results were sound.” 
 

These excerpts illustrate how reviewers can assign very similar scores while in fact disagreeing 

about specific weaknesses, such as whether it is a well-written proposal, the study is innovative, 

or the there are fundamental flaws in the scientific approach.  

Supplementary Statistical Analyses 

 This section contains additional analyses that some readers might want to know about in 

order to form a more complete impression of the relationships between the variables. The 

additional models we estimated testify to the stability of the observed effects.  

Measuring agreement for funded versus unfunded applications. Given that we found 

no agreement among reviewers for any of our outcome measures (rating, strengths, or 

weaknesses), we conducted an exploratory analysis to check whether our reviewers, at the least, 

(i) assigned better ratings, (ii) listed more strengths, or (iii) listed fewer weaknesses for those 

applications that were initially funded by NIH compared to those applications that were 
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unfunded. In other words, we wanted to know whether our reviewers agreed with the original 

NIH reviewers who decided on each application’s outcome when it was first submitted to NIH.  

To assess this, we estimated three separate linear mixed-effects models using the lme4 

package in R (32) for three outcome variables (i) preliminary rating, (ii) number of strengths, and 

(iii) number of weaknesses. In all three models, we included a fixed-effect predictor for funding 

status, which was coded as a dichotomous variable centered around 0 (i.e., –0.5 for unfunded 

applications and +0.5 for funded applications). Following the recommendations of Brauer and 

Curtin (35), we included the maximal random effects structure called for by the design. Here, the 

design requires us to account for the non-independence introduced by reviewer and by 

application with random intercepts and random slopes for each. When the maximal random 

effects structure does not converge, as was the case for these three models, experts recommend 

removing random effects one by one until the model converges into the maximally converged 

model (35). After removing the covariances among random effects, all three models converged, 

so they each contain two random intercepts and two random slopes, but not their covariances. 

The result of these exploratory analyses (Table S6) showed that our reviewers rated 

unfunded applications just as positively as funded applications (p = .58). Funded and unfunded 

applications also did not differ in the number of strengths or weaknesses that our reviewers 

mentioned in their critiques (ps > .25). Thus, the reviewers in our study did not agree with each 

other, nor with the original NIH reviewers who evaluated the applications.  

Major strengths and major weaknesses only. In order to check the robustness of the 

agreement analyses and ensure that the low levels of agreement among reviewers was not a 

function of how many words they wrote, we repeated all agreement analyses with only the major 

strengths and major weaknesses, rather than all strengths and all weaknesses. These variables 
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include only those strengths or weaknesses coded as substantial or significant within the context 

of the critique, rather than a mere mention of a strength or weakness that might be mentioned 

merely because a reviewer is verbose.  

The results of these analyses show similarly low levels of agreement as when we include 

all strengths and weaknesses. The ICC for major strengths was 0.005 (p = .8, 95% CI [0, 0.19]), 

and the ICC for major weaknesses was 0.007 (p = 1.0, 95% CI [0, 0.18]). The value of 

Krippendorff’s alpha for major strengths was α = .120 (95% CI [.074, .171]) and for major 

weaknesses was α = .151 (95% CI [.053 .250]). Finally, the one-sample t-tests of the similarity 

scores we computed showed non-significant results for both major strengths (t(24) = .156 p = 

.88, 95% CI [-2.8, 3.3]) and major weaknesses (t(24) = .79, p = .44, 955 CI [-.17, .39]), which 

indicates that there was not a statistically significant difference between (i) the major strengths 

(or major weaknesses) listed by different reviewers for the same application and (ii) the major 

strengths (or major weaknesses) listed for different applications. Taken together, these 

supplemental analyses closely mirror the results of the analyses in which we included all 

strengths and all weaknesses. Since the two indicators analyzed here focus only on substantial 

strengths and weaknesses that are central to the overall evaluation of the grant application, they 

are unconfounded with verbosity.  

Agreement among applications. In the main article, we measured agreement among 

reviewers. We assessed agreement for each of the three key variables: preliminary ratings, 

number of strengths, and number of weaknesses. We examined agreement with three different 

approaches (each described below). For complete transparency, and because we wanted to treat 

both random factors equally, we also examined agreement among applications, but readers 
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should be aware that the primary focus of this paper is on the indicators for agreement among 

reviewers. 

By measuring agreement among applications, we answer the question: Are certain 

reviewers more lenient than others, and does this difference emerge regardless of which 

application they evaluate? We conducted the same set of analyses as the ones described in the 

main article, but this time the two random factors traded places. Although not directly related to 

either of the two main research questions, these analyses nevertheless provide interesting 

insights. Figure S1 depicts the results of these three analyses for the three outcome variables.  

We computed the ICC to estimate the proportion of total variance in the outcome variable 

that is accounted for by the reviewer random factor. Table S5 provides the values for the ICCs 

for rating, strengths, and weaknesses. To summarize, the ICC values were small for preliminary 

ratings, moderate for weaknesses, and substantial for strengths (see Figure S1). This suggests 

that some reviewers are slightly overall harsher on average than others in the ratings they assign 

to their particular pool of applications, but this difference is not statistically significant in our 

sample. Some reviewers may write a few more weaknesses on average than other reviewers for 

their pool of applications, whereas a statistically significant proportion of the variation (59.2%) 

in the number of strengths listed in a critique can be attributed to the individual reviewer’s 

particular habits. Some reviewers make a greater effort than others to write positive things about 

the applications they evaluate, and this individual difference accounts for more than half of the 

variance in the number of strengths listed.  

Our second set of analyses to examine agreement among applications was carried out on 

a data file in which applications were treated like raters (columns) and reviewers were treated 

like targets (rows). For the preliminary ratings, Krippendorff’s alpha was α = .086, 95% CI[.007; 
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.169]. For the number of strengths, α = .601, 95% CI[ .564; .636]. For the number of weaknesses, 

α = .140, 95% CI[.042; .235]. These results show that there is small-to-moderate agreement 

among applications regarding the level of leniency of each of the reviewers. The fact that some 

reviewers are more lenient than others is to be expected. What is surprising, however, is the fact 

that the applications seem to function like interchangeable "raters" (or scale items), suggesting 

that the characteristics of individual applications hardly play any role in a given reviewer's 

evaluations, which seem to be driven primarily by his/her level of leniency.  

Our third set of analyses to measure agreement among applications involved the same 

comparison between the similarity of ratings from the same reviewer and the similarity of ratings 

from different reviewers. Like above, we computed two scores for every reviewer. The first 

score was the average absolute difference between all ratings from that reviewer. The second 

score was the average absolute difference between each of the ratings from that reviewer and 

each of the ratings from all other reviewers. Like before, we subtracted the first score from the 

second score to compute on overall similarity score per reviewer. Values above zero on this 

score indicate that a reviewer's ratings are more similar to each other than to ratings from other 

reviewers. An overall similarity score could only be computed for the 40 reviewers who 

evaluated two applications (three of the reviewers only evaluated one application as primary 

reviewer). We tested the 40 overall similarity scores against zero. In total, we performed three 

one sample t-tests: one for ratings, one for strengths, and one for weaknesses. Table S5 displays 

the results of these three tests. To summarize, the tests yielded non-significant results for rating 

(p = .87) and for weaknesses (p = .22), but a significant result for strengths (p < .001). This 

suggests that the number of strengths enumerated in the written critiques are to an important 

extent determined by reviewer characteristics.  
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Taken together, these analyses suggest that some reviewers tend to be more lenient than 

other reviewers in their evaluations and that this difference emerges regardless of the application 

that they evaluate. Applications function like (nearly interchangeable) scale items that allow us 

to locate reviewers on the leniency dimension.  

Exploring the relationship between strengths and weaknesses. Model 1 in the main 

article indicated that the number of weaknesses significantly predicts the preliminary ratings, 

whereas the number of strengths does not. Thus, we wanted to explore whether the number of 

strengths and the number of weaknesses listed in a critique are inversely related to one another, 

as we would expect them to be. To examine this question, we estimated an additional model not 

included in the main article, summarized in Table S7. This model is the same as Model 2 in the 

main article, except that it includes strengths as the outcome variable (rather than the preliminary 

rating) and the same three weaknesses predictors: the adaptively centered weakness value, the 

mean-centered reviewer cluster means of the weakness values, and the mean-centered 

application cluster means of the weakness values.  

We found a marginally significant inverse relationship between strengths and weaknesses 

within reviewers and within applications (bWeaknesses(Within-Within) = –0.49, p = .07). This 

relationship is also marginally significant between-applications-within-reviewers (b = –0.62, p = 

.06). When an individual reviewer lists mores weaknesses for application A than for application 

B, this reviewer also tends to list fewer strengths for application A than for application B. 

However, this strengths-weaknesses relationship did not hold between-reviewers-within 

applications (b = 0.17, p = .56). When reviewer A lists more weaknesses for a particular 

application than reviewer B, it is not necessarily the case that reviewer A will list fewer strengths 



 
 

43 
 

than reviewer B. In other words, the number of weaknesses reviewers identify for a given 

application won’t tell us anything about the number of strengths they will include.  

Alternative model specifications. Experts disagree about how to determine the 

appropriate random effects structure in linear mixed-effects models. Most experts agree that one 

should start out by attempting to estimate the model with the maximal random effects structure 

called for by the design, and then, if this model fails to converge, progressively set random 

effects to zero until convergence is achieved (35). There is disagreement among experts, 

however, about what comes next. Some experts (60) propose to interpret the model for which 

convergence has been achieved, i.e., to keep the random effects structure as maximal as possible. 

Other experts (37) suggest to further simplify the LMEM after convergence by removing random 

effects that have a near-zero variance. 

In the models reported above, we adopted Barr and colleagues’ "keep-it-maximal 

approach" (60) and interpreted the first model that converged. In the following paragraphs, we 

will adopt the Bates and colleagues’ "model selection approach" (37) and delete random effects 

that have a zero (or near zero) variance. The results of these analyses are provided in Table S8.  

We started out by estimating a model (Model 3) that was identical to Model 1, except that 

we removed the by-reviewer slopes for strengths and weaknesses, because their variance 

estimate was zero in Model 1. The results remained the same: The partial effect of weaknesses 

was statistically significant (b = 0.08, p < .02), whereas the partial effect of strengths was not (b 

= -0.01, p = .48). 

We also estimated a model (Model 4) that was identical to the previous model (Model 3), 

but we additionally removed the by-application random slopes that had extremely small variance 

estimates in the previous models (s2 = .002 and s2 =.012). The results were identical.  
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We also applied this model trimming approach to Model 2, which was reported in the 

main article. We reestimated this model, but without the by-reviewer random slope, the by-

application random intercept, and the by-application random slope (Model 5). The parameter 

estimates and the p-values were identical to those reported in Table 1 in the main article.  

Alternative ICC models. The ICC models reported in the Methods section above 

included one random factor at a time, but a viable alternative data-analytic strategy would have 

been to compute the ICCs by estimating models that contain both random factors together. In 

order to show that our choice of the data-analytic strategy had no influence on the results, we re-

estimated the fixed-intercept-random-intercept models with both random factors included (i.e., 

we regressed the outcome variable on the fixed intercept, the by-reviewer random intercept, and 

the by-application random intercept). As Table S9 shows, the results from these three models are 

virtually identical to the ICCs we estimated one random factor at a time. There is no clustering 

by application— suggesting that there is no agreement among reviewers regarding the relative 

qualities of the applications—and there is some amount of clustering by reviewer, especially for 

strengths—suggesting that reviewers differ in leniency. 

Readers may be curious as to whether a value of 0 or close to 0 for the ICC is smaller 

than what one would expect due to random chance alone. This is not the case, however. The ICC 

is defined as the between-cluster variance divided by the sum of the between-cluster variance 

and the within-cluster variance: ICC = τ2/( τ 2+σ2). The between-cluster variance is known as the 

“added variance component” (sometimes written as sA
2) and is estimated with the following 

equation: τ 2 = (MSB–MSW)/no, where MSB and MSW are the mean square between clusters and 

mean square within clusters, and no is a measure of sample size. This equation shows that the 

between-cluster variance (τ 2) is negative when MSB < MSW. Most statistics programs (including 
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R and the lme4 package we used) do not allow for negative variances and simply change 

negative values into 0. In the case of repeated sampling with random data (i.e., from a population 

in which there is no clustering), MSB will often be smaller than MSW and, as a result, the 

reported value for τ 2 will be zero. Even if MSB > MSW, the difference between the two will often 

be quite small for random data, and when this difference is then divided by no, the resulting 

between-cluster variance is so small that statistics programs will return a value of 0 (61, p. 10). 

With random data, a reasonable number of clusters, and a reasonable sample size, the expected 

value of ICC is thus zero or very close to zero. Given certain characteristics, the expected value 

may be slightly larger than zero (due entirely to the small number of samples in which clustering 

occurred by chance), but the expected modal value for ICCs in data drawn from an unclustered 

population is zero. Thus, although our ICC estimates for agreement among reviewers are small 

(regardless of the model specification used), they are not smaller than what would be expected 

by random chance; instead, they are in line with what one would expect to see with random data. 

In other words, our reviewers’ evaluations of the same application are as similar as their 

evaluations of different applications.  

Re-estimating all models with the outlier. Upon inspection of the data, we realized that 

one observation's weakness value qualified as an outlier. The observation's value was 83 (i.e., 

Reviewer #15 listed 83 weaknesses for Application #3). The descriptive statistics of the 

remaining 82 weakness values were as follows: M = 15.57, Median = 14.00, SD = 9.58, Min = 0, 

Max = 41. Following Leys and colleagues (62), we determined the median absolute deviation 

(MAD) of the weakness values, which turned out to be MAD = 8.90. Observations are 

considered outliers if they are more than 3 MADs away from the median. The weakness value of 

83 was 7.75 MADs above the median and thus clearly qualifies as an outlier. 
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The analyses reported in the main article and in the supplementary analyses above do not 

contain the outlier. Below, we repeat all of the analyses from the main article and in the S.I. with 

the outlier included in order to demonstrate for readers that inclusion or exclusion of the outlier 

had no bearing on the conclusions reached in this paper. Note that because this is an outlier on 

the weakness variable, any analysis that only focused on preliminary rating or on strengths is 

unaffected by the outlier, and thus will not be repeated here.  

Agreement among reviewers and among applications. Table S10 provides the estimates 

for the intraclass correlation (ICC), Krippendorff’s alpha, and the similarity score for the 

weakness variable with the outlier included. Although the point estimates for each of the six 

statistics increase with the inclusion of the outlier, the substantive conclusions do not. The 

statistical significance patterns are identical in terms of no agreement among reviewers. The 

patterns change slightly in terms of agreement among applications, as the ICC (p = .03) and the 

similarity score for agreement among applications (p = .07) became statistically significant at α = 

.05 and marginally significant at α = .10, respectively. However, this aligns with the overall 

pattern our results establish: there is some clustering due to reviewer, meaning that some 

reviewers are more lenient than others in their evaluations. The inclusion of the outlier merely 

strengthens the degree of clustering by reviewer in our sample.  

Relationship between ratings and critiques. The results of the two models reported in the 

main article (Model 1 and Model 2) are provided in Table S11 and Table S12, respectively, both 

without and with the outlier, to allow for direct comparison of the estimates. The significance 

patterns and substantive conclusions are identical in both models with the outlier included or 

excluded.  
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Agreement for funded versus unfunded applications. Table S13 provides the estimates 

for the LMEMs with three separate outcome variables—(i) preliminary rating, (ii) number of 

strengths, and (iii) number of weaknesses—and a dichotomous funding status predictor (coded -

0.5 for unfunded and 0.5 for funded), this time with the outlier included. The point estimates 

change slightly, but all statistical significance patterns are identical.  

Relationship between strengths and weaknesses. Table S7 includes the model with and 

without the outlier that regresses number of strengths on the three weakness predictors: the 

adaptively centered weakness value, the mean-centered reviewer cluster means of the weakness 

values, and the mean-centered application cluster means of the weakness values. The within-

within effect of weaknesses on strengths becomes significant with the outlier included (p = .004) 

where it was previously marginally significant (p = .07), but this does not change our substantive 

conclusions, given that this is only the effect within-applications and within-reviewers. The 

effect at the between-applications-within-reviewers level, which was previously marginally 

significant (p = .06), was no longer significant with the outlier included (p = .15), suggesting the 

relationship between strengths and weaknesses does not hold across multiple applications for an 

individual reviewer. Most importantly for our conclusions, though, the strengths-weaknesses 

relationship continues to be non-significant with the outlier included between-reviewers-within-

applications (p = .74): The number of weaknesses reviewers identify for a given application 

won’t tell us anything about the number of strengths they will include. 

Alternative model specifications. Table S14 provides the estimates from the three 

additional models (Model 3, Model 4, and Model 5) with the outlier included. The only effect 

that changed was the effect of strengths on rating in Model 4, which became significant with the 
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outlier included (p = .045). However, this does not change our substantive conclusion that 

weaknesses are a stronger predictor of preliminary rating than strengths. 

Alternative ICC models. Finally, we estimated the alternative models for specifying the 

ICC due to application and to reviewer with the outlier included for the weaknesses variable, 

since the ICC for rating and for strengths are unaffected by the outlier. This model estimated the 

variance due to reviewer as s2 = 49.17, the variance due to application as s2 = 0.00, and the 

residual variance as s2 = 96.64, resulting in ICCreviewer = (49.17) / (49.17 + 0.00 + 96.64) = 

33.72%, (p = .03) with the outlier compared to 15.35% (p = .4) without the outlier. Thus, 

including the outlier increases the degree to which some reviewers appear to be more or less 

lenient in the number of weaknesses they enumerate in their critiques. However, the ICCapplication 

remains the same at 0: There is no agreement among different reviewers as to the number of 

weaknesses contained in a given application.  

Supplementary Discussion 

The analyses reported in the main article establish that our reviewers did not agree with 

one another in terms of the ratings they assigned to an application, nor in terms of the number of 

strengths or weaknesses they listed in a critique. They also did not agree with the reviewers who 

evaluated these applications originally, since they did not evaluate the applications that were 

funded by NIH more positively than those that were not funded. Supplementary analyses 

summarized above suggested that there is a slight tendency for some reviewers to be more 

lenient than others, especially with regard to the number of strengths they identify for an 

application. Taken together, these results show there is no agreement among reviewers about the 

relative quality of the applications. A given evaluation of a grant application tells us more about 

the reviewer's level of leniency than about the scientific merit of the application.  
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Furthermore, although the three indicators of an application's evaluation—preliminary 

ratings, number of strengths, and number of weaknesses—tend to be related at certain levels of 

analysis (within-reviewers-within-applications and within-reviewers-between-applications), they 

are unrelated to each other at the level that is the most important for the peer-review process: At 

the between-reviewer-within-application level, there is no relationship between ratings, 

strengths, and weaknesses. It follows that if there is no relationship between the three indicators 

when different reviewers evaluate the same application, then there cannot be, by definition, a 

relationship between them when different reviewers evaluate different applications, as is the case 

in real NIH peer review.  

Considering all of the analyses reported in the main article and in the Supplementary 

Information, one can draw a number of conclusions: First, there is no agreement among 

reviewers regarding the relative quality of the grant applications. Second, reviewers evaluate 

applications that were funded by NIH just as positively as applications that went unfunded. 

Third, reviewer's evaluation of an application (preliminary rating, number of strengths and 

weaknesses mentioned) tells us something about particular characteristics of that reviewer— for 

example, his/her leniency, his/her particular way of using the 9-point rating scale, the amount of 

effort s/he is putting into writing the critiques, or his/her kindness by trying to identify as many 

strengths as possible—but does not say anything about the scientific merit of the application. 

Fourth, applications function like interchangeable scale items that help us distinguish reviewers 

along these characteristics. If we want to learn something about a reviewer, it does not really 

matter which applications we assign to him/her. Finally, although reviewers are internally 

consistent, there is no consistency when different reviewers evaluate the same application. In 
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other words, there is no agreement between reviewers on how to "translate" a certain number of 

strengths and weaknesses into a numerical rating on the 9-point rating scale.  

Limitations 

Our research is not without limitations. First, our data suffer from a restricted range 

problem, because only grant applications that were eventually funded are included in our study; 

we cannot say whether these findings would generalize to an entire pool of applications, 

including those that might never be funded by NIH. Nonetheless, the results do show that for 

grants above a certain quality threshold, the peer review process is completely random. Given 

that at NIH, only the top 50% of proposals are discussed in a study section meeting and 

considered for funding, it follows that our findings are at least applicable for those applications 

that move on to the discussion phase of peer review at NIH. Thus, our results suggest that the 

grants receiving funding may not be more deserving than some grants that are denied funding. 

Future research should aim to examine the degree to which these patterns of inter-reviewer 

agreement hold for a pool of applications of more diverse quality than ours.  

A second potential limitation stems from the possibility that reviewers in our study may 

have put less time and effort into their evaluations than real reviewers do when they know there 

are millions of dollars of research funds at stake. Relatedly, perhaps reviewers were more lenient 

in their judgments or less committed to their ratings because they knew their decisions would not 

result in real funding outcomes. However, we have evidence suggesting that our reviewers put in 

comparable effort in our study than they would have for an actual NIH study section. In a survey 

administered to participants, 81% of them reported that the pre-meeting process was either very 

similar or identical to actual NIH study sections they had participated in. In addition, our 

research team conducted semi-structured debriefing interviews with participants. During these 
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interviews, some participants were asked specifically about the process of writing their critiques. 

The reviewer participants claimed that they put in as much time and effort into their evaluations 

than for real NIH applications. One participant stated to the interviewer, “You can see our 

critique, we did it very just like a real NIH review, you know.” Three additional excerpts from 

interviews with participants are shown below, with I referring to the interviewer and P referring 

to the participant: 

Excerpt #1 

I:  I asked you about your scores. What about your critiques? Was the way you did your 

critiques any different do you think than um a typical NIH section? 

P: No I don’t think so. I mean I think they were pretty, they were about the same. 

Excerpt #2 

I:  How do you compare the way that you reviewed and critiqued your assigned grants 

compared to an NIH study section? 

P: Um overall similar I would say. 

Excerpt #3 

I:  What was the process like for you when you were actually reviewing the grants um 

initially? Was that at all different from an NIH section?  

P: Mm not, not really, no. 

Although not exhaustive, these excerpts serve to illustrate our participants’ beliefs that the 

critiques they prepared for our constructed study sections were no different from those that they 

prepare for a real NIH study section.  
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In addition, the Scientific Review Officer (SRO) who oversaw the entire constructed 

study section process, and who herself had presided over NIH study sections for more than 15 

years as SRO, wrote the following testimonial to the research team: 

My feeling about the quality of the reviews and discussions [during the meeting] 
is that they were at least as in depth as the typical review by an NIH study section. 
The reviewers were experienced and, having volunteered to participate, were 
committed to the peer review process. In nearly all cases, the critiques were 
carefully prepared.  
 

It is also worth noting that the reviewers knew they would be participating in a study 

section led by a highly experienced SRO, that they would be surrounded by real colleagues who 

would be reading their critiques, that they would need to justify and even defend their 

preliminary ratings to these colleagues, and that their critiques would be scrutinized by the 

research team. In fact, while taking a break halfway through each meeting, our reviewers’ casual 

interactions illustrated the very real professional context in which these meetings took place; for 

example, one reviewer approached another during such a break and asked if he would be 

attending a conference coming up, and the reviewers proceeded to discuss their upcoming 

presentations at this conference. Thus, our reviewer participants engaged in this task as seriously 

as when serving on real NIH study sections.  

As a final means of attempting to evaluate the ecological validity of our data, we 

examined the length of the critiques in our study and compared them to a nationally 

representative sample of critiques that our research team collected for a different study. Although 

we did not have access to the raw critiques directly from reviewers, we extracted the primary 

reviewers’ critiques from the summary statements that are sent to the Principal Investigator (PI) 

after the meeting. In that sample of 18,912 summary statements (13,012 or 68.8% of which were 

initially funded, and 5,900 or 31.2% of which were not initially funded), the primary reviewers’ 
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critiques were on average 525.16 words long (SD = 282.44, Min = 14, Max = 4207, Median = 

481). When we selected a random sample of 83 summary statements from the larger national 

sample (50 or 60.2% of which were funded, and 33 or 39.8% of which were unfunded, which 

nearly matched the 64% vs. 36% proportion of funded vs. unfunded applications in our data set), 

the primary reviewers’ critiques were on average 488.77 words long (SD = 280.56, Min = 81, 

Max = 1339, Median = 435). In our data set, primary reviewers’ critiques were on average 

662.89 words long (SD = 205.01, Min = 260, Max = 1994, Median = 602). Thus, we believe that 

although the participants in our study knew they were not participating in real NIH study 

sections, the quality and depth of the critiques were comparable to those from real NIH study 

sections.   

 One final limitation is that our study has a relatively small sample size, which means that 

our statistical models are somewhat underpowered. However, our most crucial effects are all 

estimated to be zero, suggesting that lack of power does not alter the ability to detect a small 

effect—as the effect is zero. Furthermore, since all of our most relevant effects were zero or 

close to zero, even if we adopted a much higher Type I error rate (e.g., α = .20), these effects 

would still be non-significant. Nevertheless, a larger scale study replicating our methods and 

analyses, and exploring their generalizability to other kinds of grant applications, is a fruitful and 

exciting arena for future research.   
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R Code for All Models 

library(lme4) 
library(lmSupport) 
library(lmerTest) 
 
data = read.csv("data.csv") 
hist(data$StrengthsALL) 
hist(data$WeaknessesALL) 
 
# Eliminate outlier 
data2 <- data 
data2$WeaknessesALL <- ifelse(data2$WeaknessesALL==83, NA, 

data2$WeaknessesALL)   
hist(data2$StrengthsALL) 
hist(data2$WeaknessesALL) 
# NOTE: All analyses below were run without the outlier. We re-ran the same 

analyses keeping the outlier, with all syntax identical except that “data 
= data” instead of “data = data2”.  

 
########################### RQ #1: AGREEMENT ########################## 

 
#::::::::::::::::::::::::: BY APPLICATION ::::::::::::::::::::::::::::: 
# RQ 1.1 - Rating (By Application) 
 
# RQ1.1A - ICC(rating) by Application 
summary(ICCmodel_app <- lmer(Rating ~ 1 + (1|ApplicationID),data=data2))  
rand(ICCmodel_app) #to extract p-value for ICC 
confint(ICCmodel_app) #to obtain 95% CI 
 
# RQ1.1B - Krippendorff's Alpha for Ratings by Application  
primaryratings <- read.csv("PrimaryRatings.csv") 
ratingsmatrix <- (as.matrix(primaryratings)) 
kripp.alpha(ratingsmatrix, method = "ordinal") 
 # Bootstrap conducted in SPSS using syntax from Hayes &  

Krippendorff (2013) 
 
# RQ1.1C – Similarity Score T-tests for Ratings by Application  
# See SPSS syntax below 
 
 
# RQ1.2 - Strengths (By Application) 
 
# RQ1.2A - ICC(Strengths) by Application 
summary(ICCStrengths_App <- lmer(StrengthsALL ~ 1 + (1|ApplicationID), 

data=data2))  
rand(ICCStrengths_App) #to extract p-value for ICC 
confint(ICCStrengths_App) #to obtain 95% CI  
 
 
# RQ1.2B - Krippendorff's Alpha for Strengths by Application  
primarystrengths <- read.csv("PrimaryStrengths.csv") 
strengthsmatrix <- (as.matrix(primarystrengths)) 
kripp.alpha(strengthsmatrix, method = "interval") 

# Bootstrap conducted in SPSS using syntax from Hayes &  
Krippendorff (2013) 
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# RQ1.2C – Similarity Score T-tests for Strengths by Application  
# See SPSS syntax below 
 
# RQ1.3 - Weaknesses (By Application) 
# RQ1.3A - ICC(Weaknesses) by Application 
summary(ICCWeak_app <- lmer(WeaknessesALL ~ 1 + (1|ApplicationID), 

data=data2)) # without outlier included 
rand(ICCWeak_app) #to extract p-value for ICC 
confint(ICCWeak_app) #to obtain 95% CI  
 
 
# RQ1.3B - Krippendorff's Alpha for Weaknesses by Application 
primaryweaknesses <- read.csv("PrimaryWeaknesses.csv") #no outlier 
weaknessesmatrix <- as.matrix(primaryweaknesses) 
kripp.alpha(weaknessesmatrix, method = "interval") 

# Bootstrap conducted in SPSS using syntax from Hayes &  
Krippendorff (2013) 

 
# RQ1.3C – Similarity Score T-tests for Weaknesses by Application  
# See SPSS syntax below 
 
 
#::::::::::::::::::::::::::: BY REVIEWER :::::::::::::::::::::::::::::: 
 
# RQ1.1 - Rating (By Reviewer) 
 
# RQ1.1A - ICC(rating) by Reviewer 
summary(ICCmodel_rev <- lmer(Rating ~ 1 + (1|ReviewerID), data=data2))  
rand(ICCmodel_rev) 
confint(ICCmodel_rev) 
 
 
# RQ1.1B - Krippendorff's Alpha for Rating by Reviewer  
primaryratings <- read.csv("PrimaryRatings.csv") 
ratingsmatrix <- (as.matrix(primaryratings)) 
reviewerratingsmatrix <- t(ratingsmatrix) #transpose the matrix 
kripp.alpha(reviewerratingsmatrix, method = "ordinal") 
 
# RQ1.1C - Similarity Score T-tests for Score by Reviewer 
# See SPSS syntax below 
 
 
# RQ1.2 - Strengths (By Reviewer) 
 
# RQ1.2A - ICC(strengths) by Reviewer 
summary(ICCStrengths_rev <- lmer(StrengthsALL ~ 1 + (1|ReviewerID), 

data=data2))  
rand(ICCStrengths_rev) 
confint(ICCStrengths_rev) 
 

 
# RQ1.2B - Krippendorff's Alpha for Strengths by Reviewer 
primarystrengths <- read.csv("PrimaryStrengths.csv") 
strengthsmatrix <- (as.matrix(primarystrengths)) 
reviewerstrengthsmatrix <- t(strengthsmatrix) #transpose matrix 
kripp.alpha(reviewerstrengthsmatrix, method = "interval") 
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# RQ1.1C - Similarity Score T-tests for Strengths by Reviewer 
# See SPSS syntax below 
 
 
# RQ1.3 - Weaknesses (By Reviewer) 
 
# RQ1.3A - ICC(weaknesses) by Reviewer 
summary(ICCWeak_revX <- lmer(WeaknessesALL ~ 1 + (1|ReviewerID), data=data2)) 

#without outlier included 
rand(ICCWeak_revX) 
confint(ICCWeak_revX) 
 
 
# RQ1.3B - Krippendorff's Alpha for Weaknesses by Reviewer 
primaryweaknesses <- read.csv("PrimaryWeaknesses.csv") 
weaknessesmatrix <- as.matrix(primaryweaknesses) 
reviewerweaknessesmatrix <- t(weaknessesmatrix)#transpose matrix  
kripp.alpha(reviewerweaknessesmatrix, method = "interval") 
 
# RQ1.1C - Similarity Score T-tests for Weaknesses by Reviewer 
# See SPSS syntax below 
 
############# RQ #2: RELATIONSHIP B/T RATINGS + CRITIQUES ############ 
 
# Adaptively centered predictor  
data2$StrengthsALLc1M <- ave(data2$StrengthsALL,data2$ReviewerID, 

FUN=function(x)mean(x,na.rm=T)) 
data2$StrengthsALLc2M <- ave(data2$StrengthsALL,data2$ApplicationID, 

FUN=function(x)mean(x,na.rm=T)) 
data2$WeaknessesALLc1M <- ave(data2$WeaknessesALL,data2$ReviewerID, 

FUN=function(x)mean(x,na.rm=T)) 
data2$WeaknessesALLc2M <- ave(data2$WeaknessesALL,data2$ApplicationID, 

FUN=function(x)mean(x,na.rm=T)) 
data2$StrengthsALLcM <- data2$StrengthsALL - data2$StrengthsALLc1M - 

data2$StrengthsALLc2M + mean(data2$StrengthsALL, na.rm=T)  
data2$WeaknessesALLcM <- data2$WeaknessesALL - data2$WeaknessesALLc1M - 

data2$WeaknessesALLc2M + mean(data2$WeaknessesALL, na.rm=T) 
data2$StrengthsALLc1M_CCM <- data2$StrengthsALLc1M - 

mean(data2$StrengthsALLc1M, FUN=function(x)mean(x,na.rm=T)) 
data2$StrengthsALLc2M_CCM <- data2$StrengthsALLc2M - 

mean(data2$StrengthsALLc2M, FUN=function(x)mean(x,na.rm=T)) 
data2$WeaknessesALLc1M_CCM <- data2$WeaknessesALLc1M - 

mean(data2$WeaknessesALLc1M, FUN=function(x)mean(x,na.rm=T)) 
data2$WeaknessesALLc2M_CCM <- data2$WeaknessesALLc2M - 

mean(data2$WeaknessesALLc2M, FUN=function(x)mean(x,na.rm=T)) 
   
Model1 <- lmer(Rating ~ StrengthsALLcM + WeaknessesALLcM +  
                    (1 + StrengthsALLcM + WeaknessesALLcM||ReviewerID)+  

                    (1 + StrengthsALLcM +  
WeaknessesALLcM||ApplicationID),  

data = data2)   
summary(Model1)  
Anova(Model1, type = 3, test = "F") #to get p-values for fixed effects 
 
Model2 <- lmer(Rating ~ WeaknessesALLcM + WeaknessesALLc1M_CCM +  

   WeaknessesALLc2M_CCM + 
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                     (1 + WeaknessesALLcM||ReviewerID) +  
                     (1 + WeaknessesALLcM||ApplicationID),  
                   data = data2)   
summary(Model2)  
Anova(Model2, type = 3, test = "F") 
 
 
 
######################## SUPPLEMENTARY ANALYSES ####################### 
 
# MODELS BASED ON FUNDING STATUS 
 
data3 = read.csv("data_withfunding.csv") 
data3$FundedC <- data3$Funded - .5 
 
data4 <- data3 
data4$WeaknessesALL <- ifelse(data4$WeaknessesALL==83, NA, 

data4$WeaknessesALL) 
 
ModelF1 <- lmer(Rating ~ FundedC + (1 + FundedC||ReviewerID) + (1 + 

FundedC||ApplicationID), data = data3) 
summary(ModelF1)  
Anova(ModelF1, type = 3, test = "F") 
 
ModelF2 <- lmer(StrengthsALL ~ FundedC + (1 + FundedC||ReviewerID) + (1 + 

FundedC||ApplicationID), data = data3) 
summary(ModelF2) 
Anova(ModelF2, type = 3, test = "F") 
 
ModelF3 <- lmer(WeaknessesALL ~ FundedC + (1 + FundedC||ReviewerID) + (1 + 

FundedC||ApplicationID), data = data3) 
summary(ModelF3) 
Anova(ModelF3, type = 3, test = "F") 
 
 
# RELATIONSHIP BETWEEN STRENGTHS AND WEAKNESSES  
 
ModelSW <- lmer(StrengthsALL ~ WeaknessesALLcM + WeaknessesALLc1M_CCM + 

WeaknessesALLc2M_CCM + (1|ReviewerID) +  
(0 + WeaknessesALLcM|ReviewerID) + (1|ApplicationID) +  
(0 + WeaknessesALLcM|ApplicationID), data = data2)   

summary(ModelSW)  
Anova(ModelSW, type = 3, test = "F") 
 
 
# MODEL 3 – same as Model 1 but without variance components that were 0 
Model3 <- lmer(Rating ~ StrengthsALLcM + WeaknessesALLcM + 
                  (1|ReviewerID) + (1|ApplicationID) + 
                  (0 + StrengthsALLcM|ApplicationID) +  

(0 + WeaknessesALLcM|ApplicationID), data = data2) 
summary(Model3) 
Anova(Model3, type = 3, test = "F") 
 
 
# MODEL 4 – same as Model 1 but without variance components that were close 

to zero or zero 
Model4 <- lmer(Rating ~ StrengthsALLcM + WeaknessesALLcM + 
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                  (1|ReviewerID) + (1|ApplicationID), data = data2) 
summary(Model4) 
Anova(Model4, type = 3, test = "F") 
 
 
# MODEL 5 – same as Model 2 but without variance components that were zero 
Model5 <- lmer(Rating ~ WeaknessesALLcM + WeaknessesALLc1M_CCM + 

WeaknessesALLc2M_CCM + (1|ReviewerID), data = data2)   
summary(ModelD5)  
Anova(ModelD5, type = 3, test = "F") 
 
 
# ALTERNATIVE ICC MODELS 
 
ICCmodel <- lmer(Rating ~ 1 + (1|ReviewerID) + (1|ApplicationID), data=data2)  
summary(ICCmodel) 
rand(ICCmodel) 
confint(ICCmodel) 
 
ICCmodel2 <- lmer(StrengthsALL ~ 1 + (1|ReviewerID) + (1|ApplicationID), 

data=data2)  
summary(ICCmodel2) 
rand(ICCmodel2) 
confint(ICCmodel2) 
 
 
ICCmodel3 <- lmer(WeaknessesALL ~ 1 + (1|ReviewerID) + (1|ApplicationID), 

data=data2)  
summary(ICCmodel3) 
rand(ICCmodel3) 
confint(ICCmodel3) 
 
 
 
########################### SPSS SYNTAX ########################## 
 
# COMPUTING SIMILARITY SCORES BY APPLICATION 
 
COMPUTE same1 = abs(v1-v2) .  
COMPUTE same2 = abs(v1-v3) .  
COMPUTE same3 = abs(v1-v4) .  
COMPUTE same4 = abs(v2-v3) .  
COMPUTE same5 = abs(v2-v4) .  
COMPUTE same6 = abs(v3-v4) .  
COMPUTE distsame = MEAN (same1 to same6). 
VECTOR old = v5 to v85 . 
VECTOR newa(81) . 
VECTOR newb(81) . 
VECTOR newc(81) . 
VECTOR newd(81) . 
LOOP #I=1 to 81. 
+  COMPUTE newa(#I)=abs(v1-(old(#I))). 
+  COMPUTE newb(#I)=abs(v2-(old(#I))). 
+  COMPUTE newc(#I)=abs(v3-(old(#I))). 
+  COMPUTE newd(#I)=abs(v4-(old(#I))). 
END LOOP . 
EXECUTE . 
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COMPUTE distother = MEAN (newa1 to newd81). 
 
# COMPUTING SIMILARITY SCORES BY REVIEWER  
 
COMPUTE same1 = abs(v1-v2) .  
COMPUTE distsame = MEAN (same1). 
VECTOR old = v3 to v84 . 
VECTOR newa(82) . 
VECTOR newb(82) . 
LOOP #I=1 to 82. 
+  COMPUTE newa(#I)=abs(v1-(old(#I))). 
+  COMPUTE newb(#I)=abs(v2-(old(#I))). 
END LOOP . 
EXECUTE . 
COMPUTE distother = MEAN (newa1 to newb82). 
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Table S1. Demographic information for participant reviewers.  

 CSS1 CSS2 CSS3 CSS4 Total 
Number of reviewers 10 12 12 8 42 
Gender  
        Female 
        Male 

 
2 (20%) 
8 (80%) 

 
3 (25%) 
 9(75%) 

 
3 (25%) 
9 (75%) 

 
2 (25%) 
6 (75%) 

 
10 (23.8%) 
32 (76.2%) 

Race/Ethnicity 
        Asian 
        Black 
        Hispanic 
        White 

 
6 (60%) 
0 (0%) 
0 (0%) 
4 (40%) 

 
7 (58%) 
0 (0%) 
0 (0%) 
5 (42%) 

 
8 (67%) 
0 (0%) 
0 (0%) 
4 (33%) 

 
5 (63%) 
0 (0%) 
0 (0%) 
3 (37%) 

 
26 (61.9%) 
0 (0%) 
0 (0%) 
16 (38.1%) 

Tenure Status 
       Full Professor 
       Associate Professor 
       Assistant Professor 

 
5 (50%) 
4 (40%) 
1 (10%) 

 
7 (58%) 
3 (25%) 
2 (17%) 

 
7 (58%) 
3 (25%) 
2 (17%) 

 
3 (38%) 
3 (38%) 
2 (17% 

 
22 (52.4%) 
13 (31.0%) 
7 (16.7%) 
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Table S2. List and description of axial codes derived in qualitative data analysis. 
 
Code Description 
Neither Neither a strength nor a weakness of the proposal itself 
     Budget Comment on the application’s budget 
     Cannot be coded Uninterpretable or related to participating in the study  
     Description of Aims Factual summary of the Specific Aims of the application 
     Description of PI Factual statement of the name or employer of the PI 
     Name of Environment Factual statement of the name of the research environment 
     Scientific Background Factual information used to provide scientific background  
Strength Strengths of the proposal (e.g., excellent, strong) 
     Application Evaluation of application itself (e.g., well written) 
     Approach Evaluation of the methodological approach 
     Enthusiasm High Comment on the high level of enthusiasm for the proposal 
     Environment Evaluation of the research environment 
     Innovation Evaluation of the innovation of the proposal  
     No Major Weaknesses Statement that there are “no” or “no major” weaknesses  
     PI Evaluation of the PI/Co-PI (e.g., expertise, experience) 
     Preliminary Data Evaluation of the preliminary data included 
     Significance Evaluation of the significance of the proposal’s focus 
     Strengths > Weaknesses Comment that the strengths outweigh the weaknesses 
     Team Evaluation of the team (collaborators, consultants) 
Minor Strength Moderated strengths of the proposal (e.g., adequate, sufficient) 
     Application Evaluation of application itself  
     Approach Evaluation of the methodological approach 
     Environment Evaluation of the research environment 
     Innovation Evaluation of the innovation of the proposal  
     PI Evaluation of the PI/Co-PI (e.g., expertise, experience) 
     Preliminary Data Evaluation of the preliminary data included 
     Significance Evaluation of the significance of the proposal’s focus 
     Team Evaluation of the team (collaborators, consultants) 
Weakness Weaknesses of the proposal (e.g., lacking, insufficient)  
     Advice Advice given to the PI for improvement  
     Application Evaluation of application itself  
     Approach Evaluation of the methodological approach 
     Enthusiasm Reduced Comment on the reduced/mitigated enthusiasm for proposal 
     Environment Evaluation of the research environment  
     Innovation Evaluation of the innovation of the proposal 
     Minor Weakness Qualification that the weakness is “only a minor weakness” 
     PI Evaluation of the PI/Co-PI (e.g., expertise, experience) 
     Preliminary Data Evaluation of the preliminary data included 
     Question Question posed to the PI  
     Significance Evaluation of the significance of the proposal’s focus 
     Team Evaluation of the team (collaborators, consultants) 
     Weaknesses > Strengths Comment that the weaknesses outweigh the strengths  
Major Weakness Major weakness that is explicitly stated  (e.g., critical issue, highly problematic) 
     Approach Evaluation of the methodological approach 
     Enthusiasm Low Comment on the low enthusiasm for the proposal  
     Innovation Evaluation of the innovation of the proposal  
     No Strengths Statement that there are “no” strengths  
     Preliminary Data Evaluation of the preliminary data included  
     Significance Evaluation of the significance of the proposal’s focus 
     Team Evaluation of the team (collaborators, consultants)  
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Table S3. Examples from corpus of each axial code. 
 
Code Example from Corpus 
Neither  
    Budget In budget PI’s salary exceeds the NIH cap 
    Cannot be coded But I guess this grant was submitted much earlier 
    Description of Aims To test the central hypothesis three Specific Aims are proposed 
    Description of PI This is a MPI application led by Dr. Susan Albert* 
    Name of Environment The work will be conducted at the University of X* 
    Scientific Background Blockade of CD47 on tumor cells leads to phagocytosis by macrophages 
Strength  
    Application This is an outstanding-to-exceptional application 
    Approach The experiments proposed are well-designed 
    Enthusiasm High The overall project was reviewed with high enthusiasm 
    Environment The environment at University Y* is superb 
    Innovation The novel mechanisms of AKT regulation that are proposed are highly innovative 
    No Major Weaknesses No major weaknesses noted 
    PI He has over 14 years of experience in brain tumor research 
    Preliminary Data The hypothesis is supported by strong preliminary data 
    Significance This application promises to have high translational impact on melanoma treatment 
    Strengths > Weaknesses Overall, this grant has several merits that outweigh its weaknesses 
    Team An outstanding supporting team of researchers 
Minor Strength  
    Application Statistics are presented for all three aims 
    Approach Aim 3 is technically interesting  
    Environment The environment is conducive to perform the proposed studies 
    Innovation It has some innovation in the grant 
    PI PI has experience in DNA technology 
    Preliminary Data The proposal has preliminary data suggesting a tumor suppressor function of c-Abl  
    Significance If successful, application may offer new insights into treating BRAF-driven  

     melanomas 
    Team The investigative team is appropriately skilled 
Weakness  
    Advice Therefore, in my opinion, it will be advisable to probe one clinical trial for the proposal 
    Application In Specific Aim II, the expected outcomes and pitfalls are not well-described 
    Approach The main weakness lies in the high concentration of the inhibitor to be used in order   

     to achieve the expected outcome 
    Enthusiasm Reduced These limitations have resulted in dampened enthusiasm 
    Environment No equipment for UV exposure is mentioned in Facilities or Equipment sections 
    Innovation The use of paclitaxel or doxorubicin is not novel 
    Minor Weakness There are some minor weaknesses in research design 
    PI Principle investigator don’t have strong background in area of pancreatic cancer 
    Preliminary Data Overall, the preliminary data are rather limited 
    Question Can the strategy to prepare high affinity CD47 agonists be extended to solid tumors? 
    Significance It’s not clear how the aim will lead to further advances in the field 
    Team This team is lacking experience on PTEN prostate cancer mouse models 
    Weaknesses > Strengths Overall the weaknesses just seem to out weigh the strengths 
Major Weakness  
    Approach The lack of consideration of TERT activation is a major weakness of the project 
    Enthusiasm Low Overall enthusiasm for this proposal is limited 
    Innovation However, lack of novelty remains a major concern 
    No Strengths None [listed in the “Strengths” section] 
    Preliminary Data It is very troublesome that there is no direct preliminary data to support the    

     applicants’ expectation that such mechanistically relevant changes might occur 
    Significance Significance of the knowledge gained from this group is questionable 
    Team Heavy reliance on multiple outside investigators for specialized techniques (MRI) is  

     concerning 
*Note: These are pseudonyms.   
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Table S4. Frequency of axial codes in our data. 
 
Code Sum  M SD Correlation with rating* 
Neither 533 6.42 4.10 –.09 
    Budget 3 0.04 0.19 .06 
    Cannot be coded 5 0.06 0.24 .15 
    Description of Aims 330 3.98 3.40 –.20 
    Description of PI 47 0.57 0.89 .05 
    Name of Environment 7 0.08 0.28 .09 
    Scientific Background 141 1.70 1.84 .11 
Strength 2126 25.61 13.45 –.45 
    Application 153 1.84 2.28 –.33 
    Approach 291 3.51 2.34 –.42 
    Enthusiasm High 3 0.04 0.19 –.12 
    Environment 115 1.39 1.10 –.15 
    Innovation 254 3.06 2.34 –.41 
    No Major Weaknesses 107 1.29 1.31 –.27 
    PI 385 4.64 3.88 –.17 
    Preliminary Data 160 1.93 2.37 –.33 
    Significance 434 5.23 3.67 –.29 
    Strengths > Weaknesses 3 0.04 0.19 .01 
    Team 221 2.66 2.73 –.14 
Minor Strength 379 4.57 3.98 .17 
    Application 23 0.28 0.89 –.05 
    Approach 37 0.45 0.80 .13 
    Environment 34 0.41 0.73 .22 
    Innovation 44 0.53 0.93 .22 
    PI 24 0.29 0.65 .11 
    Preliminary Data 52 0.63 1.38 .16 
    Significance 115 1.39 1.64 –.02 
    Team 50 0.60 1.22 .02 
Weakness 1310 15.78 11.40 0.54 
    Advice 91 1.10 1.39 –.01 
    Application 221 2.66 3.00 .37 
    Approach 469 5.65 4.37 .39 
    Enthusiasm Reduced 18 0.04 0.19 .09 
    Environment 8 0.18 0.42 .11 
    Innovation 142 0.10 0.43 .32 
    Minor Weakness 29 1.71 2.21 –.22 
    PI 37 0.35 0.61 .25 
    Preliminary Data 90 0.45 1.24 .41 
    Question 64 1.08 2.45 .30 
    Significance 112 0.77 1.59 .40 
    Team 25 1.35 1.80 .16 
    Weaknesses > Strengths 4 0.30 0.62 .22 
Major Weakness 50 0.05 0.22 .29 
    Approach 25 0.30 0.81 .26 
    Enthusiasm Low 4 0.05 0.22 .30 
    Innovation 1 0.01 0.11 .11 
    No Strengths 1 0.01 0.11 .11 
    Preliminary Data 6 0.07 0.30 .15 
    Significance 7 0.08 0.32 .13 
    Team 6 0.07 0.41 .03 
*Note. Rating consists of a reverse nine-point scale, so a negative correlation suggests it is associated with a lower 
(i.e., better) rating, whereas a positive correlation suggests it is associated with a higher (i.e., worse) rating.	
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Table S5. Estimates of agreement among reviewers and of agreement among applications  

  Agreement Among 
Reviewers 

Agreement Among 
Applications 

Rating 

ICC ICC = 0.00% 
(p = 1.0) 

ICC = 3.87%  
(p = .80) 

Krippendorff’s α α = .024  
[-.047, .093] 

α = .086 
[.007, .169] 

Similarity t-test M = 0.01, SD = 0.75, 
t(24) = 0.07, p = .95 

M = -0.02, SD = 0.97, 
t(39) = -0.16, p = .87 

Strengths 

ICC ICC = 0.00% 
(p = 1.0) 

ICC = 59.22%  
(p < .001) 

Krippendorff’s α α = -.011,  
[-.094, .079] 

α = .601  
[.564, .636] 

Similarity t-test M = -0.50, SD = 7.17, 
t(24) = -0.35, p = .73 

M = 4.36, SD = 6.37, 
t(39) = 4.33, p < .001 

Weaknesses 

ICC ICC = 1.74%  
(p = .90) 

ICC = 15.35% 
(p = .40) 

Krippendorff’s α α = .004 
[-.063, .072] 

α = .140 
[.042, .235] 

Similarity test M = 0.27, SD = 4.63, 
t(24) = 0.29, p = .77 

M = 1.42, SD = 7.02, 
t(38) = 1.26, p = .22 

Note. ICCs were estimated via a LMEM with an overall fixed intercept and a random intercept for the 
cluster variable of interest (application or reviewer). An alternative approach to estimating the ICC can be 
found in Table S9. P-values were estimated via a χ2 likelihood ratio test on the random intercept from the 
LMEM. Values of Krippendorff’s α above .67 are considered suitable for tentative conclusions about 
reliability, and above .8 are considered reliable. 95% confidence intervals were estimated using 1000 
bootstrapped samples (23). The similarity t-tests are one-sample t-tests conducted on the similarity scores; 
values above zero indicate that an application’s ratings are more similar to each other than to ratings 
referring to other applications (for agreement among reviewers), or that a reviewer’s ratings are more 
similar to each other than to ratings from other reviewers (for agreement among applications.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

68 
 

Table S6.  Parameter estimates from estimating the effect of funding status on the rating, 

number of strengths, and number of weaknesses  

 Outcome:  
Rating 

Outcome:  
 Strengths 

Outcome: 
Weaknesses 

Fixed Effects  b (SE)Sig b (SE)Sig b (SE)Sig 
(Intercept) 3.48 (.21)*** 30.72 (2.25)*** 14.90 (1.46)*** 
Funded -0.20 (.34) 1.50 (2.76) -3.73 (3.14) 
    
Random Effects Var Var Var 
By-reviewer    
     Intercept 0.10 115.77 28.14 
     ReviewerFunded 0.09 0.00 144.83 
By-application    
    Intercept 0.00 6.41 0.00 
    ApplicationFunded 2.06 0.00 0.00 
Residual 2.06 71.79 62.25 
Notes. * p < .05. ** p < .01. *** p < .001. P-values for fixed effects are computed via an 
approximate F-test with the Kenward-Roger method to compute the degrees of freedom (63).  
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Table S7. Parameter estimates from a model regressing strengths on weaknesses (without 
and with the outlier) 
 
 No Outlier With Outlier  
Fixed Effects  b (SE)Sig b (SE)Sig  
(Intercept) 30.09 (1.93)*** 30.09 (1.96)***  
Weaknesses(Within-Within) –.49 (.17)º –.41 (.13)**  
Weaknesses(App_Cluster_Means) –.62 (.26)º –.32(.22)  
Weaknesses(Rev_Cluster_Means) .17 (.27) .07 (.21)  
    
Random Effects Var  Var   
By-reviewer    
     Intercept 123.83 125.82  
     Weaknesses(Within-Within) 0.05 0.00  
By-application    
     Intercept 1.22 4.40  
     Weaknesses(Within-Within) 0.00 0.00  
Residual 60.52 60.19  
Notes. º p < .10 * p < .05. ** p < .01. *** p < .001. P-values for fixed effects are computed via an 
approximate F-test with the Kenward-Roger method to compute the degrees of freedom (63). 
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Table S8. Parameter estimates from Model 3, Model 4, and Model 5 
 
 Model 3 Model 4 Model 5 
Fixed Effects  b (SE)Sig

 b(SE)Sig b (SE)Sig 
(Intercept) 3.46 (.21)*** 3.49 (.26)*** 3.52 (.15)*** 
Strengths(Within-Within) -0.01 (.12) -0.03 (.02)  
Weaknesses(Within-Within) 0.08 (.03)* 0.11 (.02)*** 0.13 (.02)*** 
Weaknesses(App_Cluster_Means)   0.17 (.03)*** 
Weaknesses(Rev_Cluster_Means)   0.03 (.02) 
    
Random Effects Var Var Var 
By-reviewer    
     Intercept .967 .773 .625 
     Strengths(Within-Within)    
     Weaknesses(Within-Within)    
By-application    
     Intercept .164 .969  
     Strengths(Within-Within) .002   
     Weaknesses(Within-Within) .012   
Residual .446 .636 .689 
Notes. * p < .05. ** p < .01. *** p < .001. On the outcome variable (preliminary rating), higher 
values represent more negative evaluations.  
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Table S9. Parameter estimates from models estimating the ICC by application and by 
reviewer 
 
 Rating Strengths Weaknesses 
Fixed Effects  b (SE)Sig

 b(SE)Sig b (SE)Sig 
(Intercept) 3.55 (.17)*** 30.1 (1.94)*** 15.6 (1.13)*** 
    
Random Effects VarSig VarSig VarSig 
By-reviewer intercept  .08 115.17*** 14.14 
By-application intercept  .00 4.09 0.00 
Residual 2.09 72.97 77.96 
    
ICCreviewer 3.87% 59.91% 15.35% 
ICCapplication 0.00% 2.13% 0.00% 
Notes. * p < .05. ** p < .01. *** p < .001. P-values for fixed effects are computed via an approximate F-
test with the Kenward-Roger method to compute the degrees of freedom (63). P-values for random effects 
are computed via a χ2 likelihood ratio test. The ICC is computed by dividing the variance explained by the 
random intercept of interest by the sum of the total variance explained by all effects (i.e., the random 
intercept of interest, the other random intercept, and the residual variance). Here, we express the ICC as a 
percentage so that it indicates the percent of variance in the outcome variable that is explained by the 
random factor of interest.  
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Table S10. Estimates of agreement among reviewers and of agreement among applications) 
for the weaknesses variable with the outlier included 
 
  Agreement Among 

Reviewers 
Agreement Among 

Applications 

Weaknesses 
(including outlier) 

ICC ICC = 2.82%  
(p = .80) 

ICC = 33.7%  
(p = .03) 

Krippendorff’s α α = .034  
[-.104, .160] 

α = .339  
[.253, .422] 

Similarity t-test M = 0.70, SD = 5.52, 
t(24) = 0.64, p = .53 

M = 2.08, SD = 6.95, 
t(39) = 1.89, p = .07 

Note. ICCs were estimated via a LMEM with an overall fixed intercept and a random intercept for the 
cluster variable of interest (application or reviewer). An alternative approach to estimating the ICC can be 
found in Table S9. P-values were estimated via a χ2 likelihood ratio test on the random intercept from the 
LMEM. Values of Krippendorff’s α above .67 are considered suitable for tentative conclusions about 
reliability, and above .8 are considered reliable. 95% confidence intervals were estimated using 1000 
bootstrapped samples (23). The similarity t-tests are one-sample t-tests conducted on the similarity scores; 
values above zero indicate that an application’s ratings are more similar to each other than to ratings 
referring to other applications (for agreement among reviewers), or that a reviewer’s ratings are more 
similar to each other than to ratings from other reviewers (for agreement among applications.  
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Table S11. Parameter estimates from Model 1 without and with the outlier 
 
 No Outlier With Outlier 
Fixed Effects  b (SE)Sig b (SE)Sig 
(Intercept) 3.46 (.21)*** 3.50(.25)*** 
Strengths(Within-Within) -.01(.02) -.03(.02) 
Weaknesses(Within-Within) .08 (.03)* .09(.03)** 
   
Random Effects Var Var 
By-reviewer   
     Intercept 0.97 0.89 
     Strengths(Within-Within) 0.00 0.00 
     Weaknesses(Within-Within) 0.00 0.00 
By-application   
     Intercept 0.16 0.70 
     Strengths(Within-Within) 0.00 0.00 
     Weaknesses(Within-Within) 0.01 0.01 
Residual 0.45 0.47 
Notes. * p < .05. ** p < .01. *** p < .001. On the outcome variable (preliminary rating), higher values 
represent more negative evaluations. P-values for fixed effects are computed via an approximate F-test 
with the Kenward-Roger method to compute the degrees of freedom (63).  
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Table S12. Parameter estimates from Model 2 without and with the outlier 
 
 No Outlier With Outlier  
Fixed Effects  b (SE)Sig b (SE)Sig  
(Intercept) 3.51 (.15)*** 3.53 (.16)***  
Weaknesses(Within-Within) .13 (.02)** .11 (.02)***  
Weaknesses(App_Cluster_Means) .17 (.03)*** .15 (.02)***  
Weaknesses(Rev_Cluster_Means) .03 (.02) .02 (.02)  
    
Random Effects Var  Var   
By-reviewer    
     Intercept 0.62 0.64  
     WeaknessesWithin-Within 0.00 0.00  
By-application    
     Intercept 0.00 0.00  
     WeaknessesWithin-Within 0.00 0.00  
Residual 0.69 0.66  
Notes. * p < .05. ** p < .01. *** p < .001. P-values for fixed effects are computed via an approximate F-
test with the Kenward-Roger method to compute the degrees of freedom (63). 
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Table S13. Parameter estimates from estimating the effect of funding status on the rating, 
number of strengths, and number of weaknesses with the outlier included 
 
 Outcome:  

Rating 
Outcome:  
 Strengths 

Outcome: 
Weaknesses 

Fixed Effects  b (SE)Sig  b (SE)Sig b (SE)Sig 
(Intercept) 3.48 (.21)*** 30.72 (2.25)*** 14.94 (1.31)*** 
Funded -0.19 (.34) 1.50 (2.76) -1.46 (2.32) 
    
Random Effects Var Var Var 
By-reviewer    
     Intercept .10 115.77 6.22 
     ReviewerFunded .09 0.00 27.56 
By-application    
    Intercept .00 6.41 0.00 
    ApplicationFunded .00 0.00 0.00 
Residual 2.06 71.79 75.309 
Notes. * p < .05. ** p < .01. *** p < .001. P-values for fixed effects are computed via an approximate F-
test with the Kenward-Roger method to compute the degrees of freedom (63).  
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Table S14.  Parameter estimates from Model 3, Model 4, and Model 5, with the outlier 
included. 
 
 Model 3 Model 4 Model 5 
Fixed Effects  b (SE)Sig

 b(SE)Sig b (SE)Sig 
(Intercept) 3.50 (.25)*** 3.50 (.27)*** 3.55 (.15)*** 
Strengths(Within-Within) -0.03 (.02) -0.04 (.02)*  
Weaknesses(Within-Within) 0.09 (.03)** 0.10 (.02)*** 0.11 (.01)*** 
Weaknesses(App_Cluster_Means)   0.15 (.02)*** 
Weaknesses(Rev_Cluster_Means)   0.03 (.02) 
    
Random Effects Var Var Var 
By-reviewer    
     Intercept .890 .717 .593 
     Strengths(Within-Within)    
     Weaknesses(Within-Within)    
By-application    
     Intercept .696 1.213  
     Strengths(Within-Within) .001   
     Weaknesses(Within-Within) .001   
Residual .465 .647 .742 
Notes. * p < .05. ** p < .01. *** p < .001. On the outcome variable (preliminary rating), higher 
values represent more negative evaluations.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

77 
 

Figure S1. Visual depiction of the three measures of agreement among applications with 

95% confidence intervals.  
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